Robust inversion, dimensionality reduction, and randomized sampling

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Robust inversion, dimensionality reduction, and randomized sampling

We consider a class of inverse problems in which the forward model is the solution operator to linear ODEs or PDEs. This class admits several dimensionality-reduction techniques based on data averaging or sampling, which are especially useful for large-scale problems. We survey these approaches and their connection to stochastic optimization. The data-averaging approach is only viable, however,...

متن کامل

On Point Sampling Versus Space Sampling for Dimensionality Reduction

In recent years, random projection has been used as a valuable tool for performing dimensionality reduction of high dimensional data. Starting with the seminal work of Johnson and Lindenstrauss [8], a number of interesting implementations of the random projection techniques have been proposed for dimensionality reduction. These techniques are mostly space symmetric random projections in which r...

متن کامل

Randomized Dimensionality Reduction for k-Means Clustering

We study the topic of dimensionality reduction for k-means clustering. Dimensionality reduction encompasses the union of two approaches: 1) feature selection and 2) feature extraction. A feature selection-based algorithm for k-means clustering selects a small subset of the input features and then applies k-means clustering on the selected features. A feature extraction-based algorithm for k-mea...

متن کامل

Adaptive sampling for nonlinear dimensionality reduction based on manifold learning

We make use of the non-intrusive dimensionality reduction method Isomap in order to emulate nonlinear parametric flow problems that are governed by the Reynolds-averaged Navier-Stokes equations. Isomap is a manifold learning approach that provides a low-dimensional embedding space that is approximately isometric to the manifold that is assumed to be formed by the high-fidelity NavierStokes flow...

متن کامل

Envisioning a Robust, Scalable Metacognitive Architecture Built on Dimensionality Reduction

One major challenge of implementing a metacognitive architecture lies in its scalability and flexibility. We postulate that the difference between a reasoner and a metareasoner need not extend beyond what inputs they take, and we envision a network made of many instances of a few types of simple but powerful reasoning units to serve both roles. In this paper, we present a vision and motivation ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematical Programming

سال: 2012

ISSN: 0025-5610,1436-4646

DOI: 10.1007/s10107-012-0571-6